



## Ceramic Fuel Cells Residential Generator BlueGen<sup>™</sup> Ultra-efficient distributed power generation in Smart Grid Environment





Presented at



Dr Karl Föger Chief Technology Officer Ceramic Fuel Cells Limited October 19, 2011 www.cfcl.com.au







- Formed in 1992, from the Australian Government research organisation (CSIRO)
- 130 staff
  - Melbourne Head Office, R&D, product development and prototyping
  - German manufacturing plant
  - UK ceramic powder plant
- High efficiency electricity generation products for home and small business (solid oxide fuel cell technology)
- About 300 million USD invested in technology & product development
- Listed on ASX and London AIM market (CFU)







# Ceramic Fuel Cells' Technology

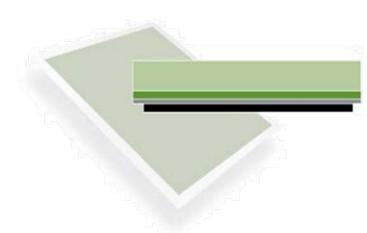




# Why Fuel Cells and SOFC?

## SOFC generators offer significant advantages

## **Prime Competitive edge**


## Potential for very high electrical efficiency Power modulation over wide window at high efficiency

## **Additional Advantages**

- Operate on conventional fuels (fuel flexible)
- Wide range of sizes (W to MW) and design options (tubular, planar...)
- Low heat output long operating hours
- Environmental benefits
  - Low CO<sub>2</sub> emissions
  - Very low noise and vibrations
  - Virtually no NOx or SOx emissions

## **Current drawbacks**

- Costs, familiarity,
- Long start-up time, compactness, proven robustness







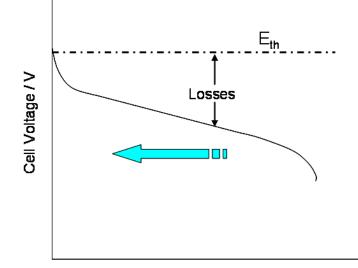
# How to Harness High Electrical Efficiency Stack Theoretical Efficiency

$$\mathcal{E}_{(th)} = \Delta G_{T} / \Delta H^{0} \times U_{F}$$

The Methane Fuel Cell "the chemical combined cycle system"

$$\begin{array}{rcl} CH_4 + 2 \ H_2O &+ \mbox{Heat} &\rightarrow 4 \ H_2 + CO_2 \\ & & 4H_2 + 4O^{2-} \rightarrow H_2O + 8e \\ & & \Delta H^{\ 0} & (CH_4) = -802 \ \mbox{kJ/mol} \\ & \Delta H^{\ 0} & (4H_2) = -968 \ \mbox{kJ/mol} \\ & \Delta G_{\ 750C} \ (CH_4) = -798 \ \mbox{kJ/mol} \\ & \Delta G_{\ 750C} \ (4H_2) = -786 \ \mbox{kJ/mol} \end{array} \right\} +20\%$$

 $\mathcal{E}_{(th)} = [-786/-802 \times 0.85] \times 100 = 83\%$ 

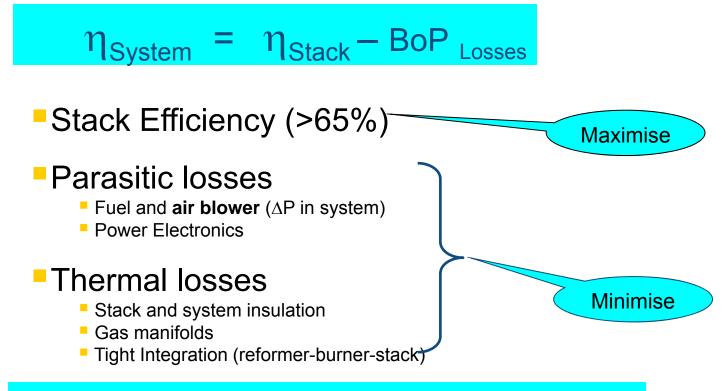

 $\mathcal{E}_{(th)}$  (Hydrogen Fuel Cell) = 68%





## How to Harness High Electrical Efficiency Stack DC Efficiency

$$\mathcal{E}_{(FC)} = [\mathcal{E}_{(th)} \times \mathcal{E}_{(V)}] \, \mathbf{100}$$
$$\mathcal{E}_{(V)} = \mathbf{E}/\mathbf{E}_{th} = (\mathbf{E} - \mathbf{IR} - \eta)/\mathbf{E}_{th}$$




Current density / mA cm<sup>-2</sup>





# Fuel Cell System Efficiency



# Fuel Cell stack needs to be designed as system component





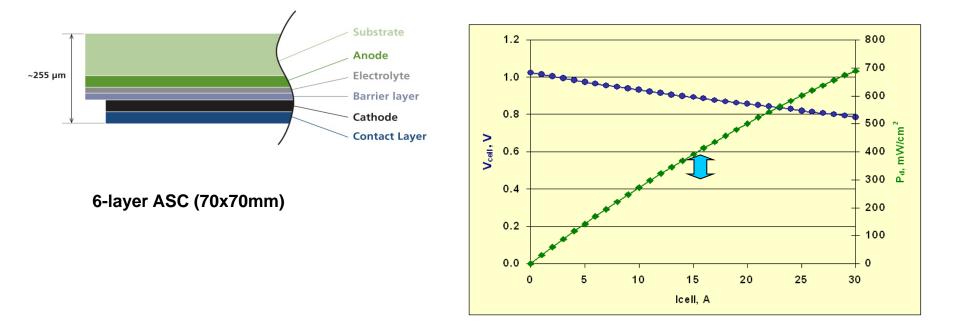
# **Maximising Efficiency - Summary**

## Internal Steam Reforming:

- The "chemical combined cycle"
- Low air ratios endothermic cooling
- Operation at high Cell Voltage (>800mV/layer)
  - Low overpotential and ohmic losses
  - High performance cells (acceptable power densities)
- High Fuel Utilisation
- Effective Thermal and Flow Management
  - Minimise thermal losses
  - Minimise temperature gradients
  - Uniform fuel distribution
  - Low △P (parasitic losses)






# **High Performance Cells**

## **Structure and Performance**

Anode supported cell (350 microns)



- Temperature: 750°C
- 100% Direct Internal Reforming of CH<sub>4</sub>
- Fuel Utilization: up to 90% in single pass
- Gross  $\eta_e$ : >70% in single pass







# CFCL's SOFC Technology



# 4x4 Array Stack

### Performance

Operating temperature 750 °C (average) Direct internal reforming Fuel utilisation - approx 85% Gross electrical output up to 2.3 kWe Gross stack electrical efficiency >68 %





# Ceramic Fuel Cells' Products



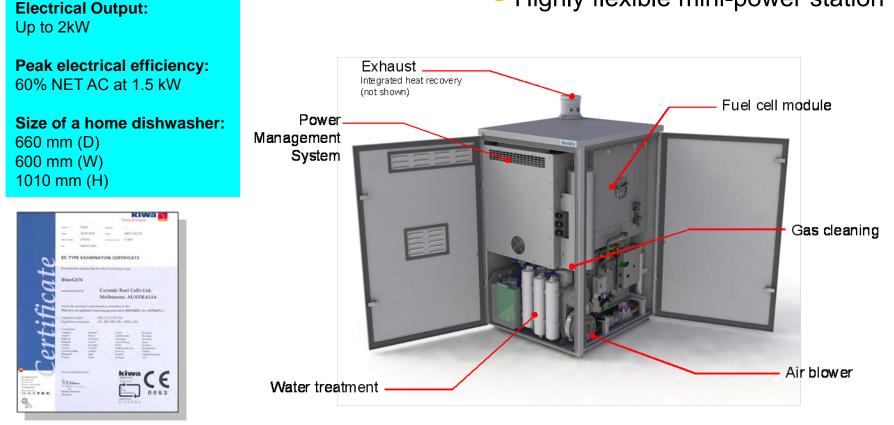


**BlueGEN** 

# Products using Gennex Module

#### **Common technology platform** With **Partners:** Bruns EWE Fully integrated mCHP **e.on** uk • Power + space heating and hot water For customers needing a **BDR** • complete heating solution GDF SVez fuel cell module Modular Co-Gen Power + hot water . For markets with lower • heating demand (Australia, Japan, US) And customers with • **CFCL** existing heating systems (EU retrofit)

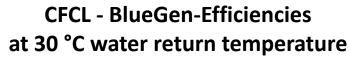
12



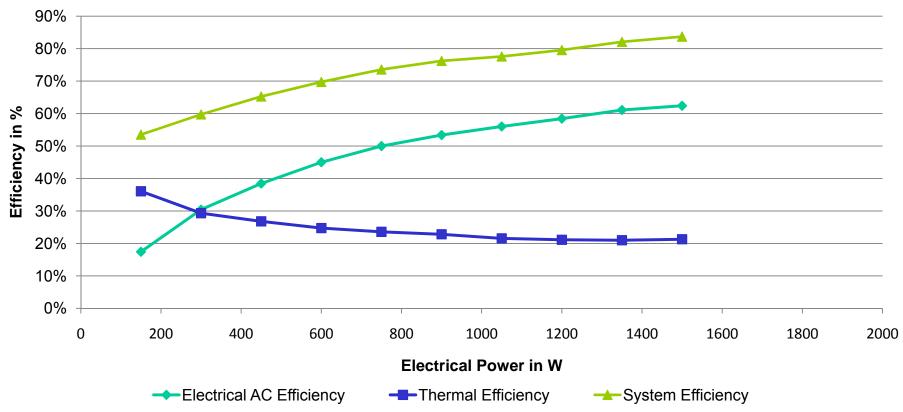





## Mono-generation or co-generation


Highly flexible mini-power station





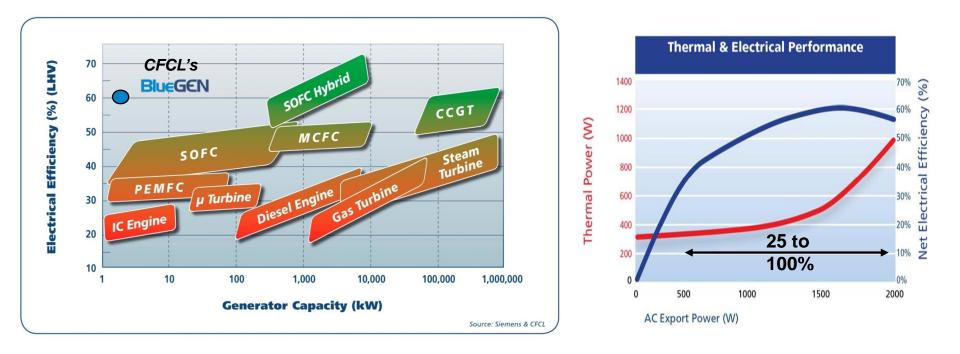



# Customer Data – German Gas Association







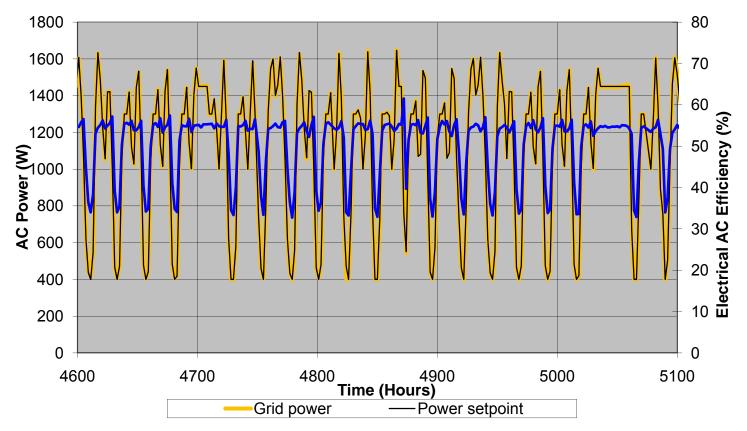





# Capability of SOFC Technology

## Trend towards highly efficient distributed generation

## Large Power stations no longer efficiency advantage




Flexible power generation is required in "electricity internet"

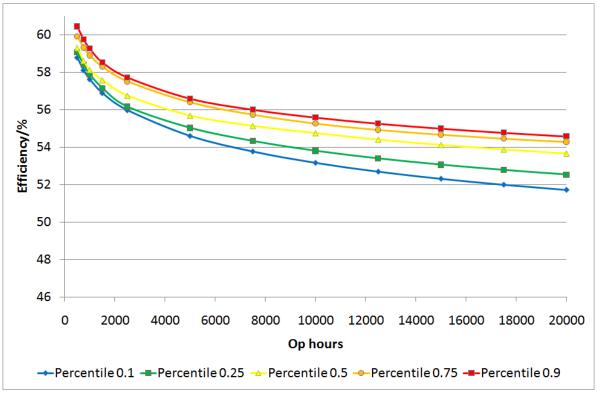




# **Power Modulation**



Complex power modulation demonstrated with multiple customers:


- Remotely configurable to match customer demands
- 400W to 1.6 kW at efficiencies of 35% to 55%





# Efficiency Life Data

## Statistical Analysis of Current Production Systems



- Still performance differences between current production systems, but significant reduction in spread of efficiency degradation compared to early systems
- Further gains through improvement in technology and manufacturing processes





# **Remote Monitoring and Control**

## www.bluegen.net



## Currently

- Display performance data for Customers
- •Remote monitoring & control for CFCL
- Maintenance Monitoring

## In future

Extensive internet based Monitoring and Control tools for customers, CFCL and maintenance contractors.





# **BlueGen Performance Summary**

# At End August, 90 BlueGen and mCHP units are installed at sites in Europe, Japan, USA and Australia

 Aggregate operation of more than 300,000 hours (= more than 30 years' collective operation)

# Earliest installed units operating for more than 10,000 hours or 14 months

Continuing to improve fuel cell stack lifetime towards commercial target of 4-5 years and robustness, including 'cycling' on and off, to deliver commercial product performance

All BlueGen units have achieved starting electrical efficiency of 60% or more, demonstrating robust and repeatable performance in many different real world conditions





# Applications





# Many installation possibilities...

Indoors Residential Gasterra Netherlands



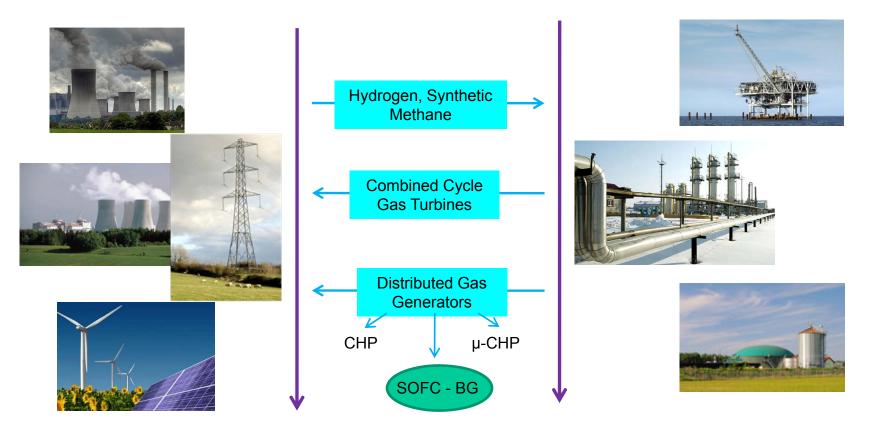
Outdoors Residential or Commercial *Vic Urban Melbourne* 





**Indoors** Commercial Sanevo Germany




Inside a car park! Electric Vehicle charging station Adelaide Council





# **Future Smart Energy System**

## Gas and Electricity Grids merge



Limited <----- Storage Capacity -----> Substantial



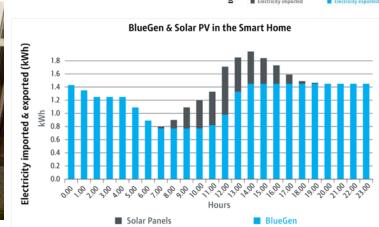


# Smart "Home" - Smart Grid Installations Alliander Netz Ag – Heinsberg

#### Smart Energy system for **Administration Building** BlueGen is complimentary to Renewables: Solar PV Solar Thermal Micro-Wind **Electricity Generated - BlueGen** 0 1200 Electricity generated (kWh) 1000 Average Electrical Efficiency 800 600 Electrical efficiency (% 400 200 AUGIO 500 octo NONIO Declo Jan 11 Febli Maril APIT May 10 May 1an 450 Opt Reg MONTH MONTH

#### 23






# Smart Home/ Smart Grid Installations

## Ausgrid 'Smart Home'

- Renovated home in Sydney showcase existing energy technologies
  solar PV, energy storage, energy efficient appliances & BlueGen
- The smart home is real being 'road tested' by a family of three
  - Living a normal life, and... blogging about their experiences online
  - www.smarthomefamily.com.au
- BlueGen installed August 2010









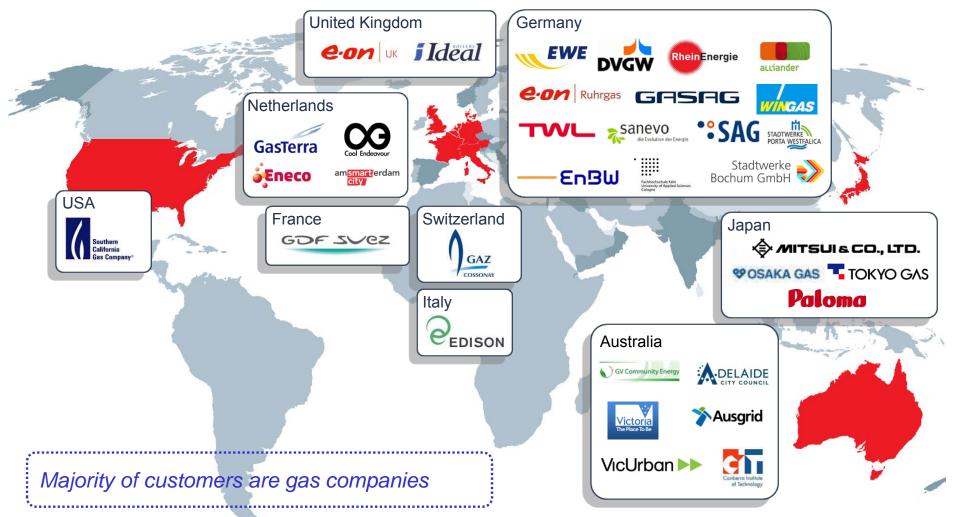


# BlueGen + NG + Renewables



*Highly efficient SOFC like BG* + *Natural Gas not only interim solution but critical component of sustainable energy future* 






# Commercialisation





# **Global Customers**







# Volume Manufacturing in Germany



## **Robotic stack assembly**

•Capacity 10000 stacks pa

## Assembly of BlueGen units

- Current capacity 1000 system per year
- Plant has been certified as part of CE approval

Industriepark Oberbruch, Heinsberg











## www.cfcl.com.au

## www.bluegen.info

## www.bluegen.net

GOL

Internet

· · · · ·







This Presentation has been prepared by, and is proprietary to, Ceramic Fuel Cells Limited ('CFCL').

This Presentation does not constitute or form part of an offer for sale or subscription or an invitation or solicitation of an offer to subscribe for or purchase any securities and neither this document nor anything contained herein shall form the basis of any contract or commitment whatsoever.

No representation or warranty, express or implied, is given by CFCL, its Directors, employees or professional advisors as to the accuracy, fairness, sufficiency or completeness of the information, opinions or beliefs contained in this document. Except in the case of fraud, no liability is accepted for any loss, cost or damage suffered or incurred as a result of the reliance on such information, opinions or beliefs.

The information in this Presentation reflects prevailing conditions and the views of CFCL as of this date, which are subject to change.

© CFCL 2011